Imaging of Scleral Collagen Deformation Using Combined Confocal Raman Microspectroscopy and Polarized Light Microscopy Techniques

نویسندگان

  • Nilay Chakraborty
  • Mian Wang
  • Jason Solocinski
  • Wonsuk Kim
  • Alan Argento
چکیده

This work presents an optospectroscopic characterization technique for soft tissue microstructure using site-matched confocal Raman microspectroscopy and polarized light microscopy. Using the technique, the microstructure of soft tissue samples is directly observed by polarized light microscopy during loading while spatially correlated spectroscopic information is extracted from the same plane, verifying the orientation and arrangement of the collagen fibers. Results show the response and orientation of the collagen fiber arrangement in its native state as well as during tensile and compressive loadings in a porcine sclera model. An example is also given showing how the data can be used with a finite element program to estimate the strain in individual collagen fibers. The measurements demonstrate features that indicate microstructural reorganization and damage of the sclera's collagen fiber arrangement under loading. The site-matched confocal Raman microspectroscopic characterization of the tissue provides a qualitative measure to relate the change in fibrillar arrangement with possible chemical damage to the collagen microstructure. Tests and analyses presented here can potentially be used to determine the stress-strain behavior, and fiber reorganization of the collagen microstructure in soft tissue during viscoelastic response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarized 3D Raman and nanoscale near-field optical microscopy of optically inscribed surface relief gratings: chromophore orientation in azo-doped polymer films.

We have used polarized confocal Raman microspectroscopy and scanning near-field optical microscopy with a resolution of 60 nm to characterize photoinscribed grating structures of azobenzene doped polymer films on a glass support. Polarized Raman microscopy allowed determining the reorientation of the chromophores as a function of the grating phase and penetration depth of the inscribing laser i...

متن کامل

Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds.

Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional scaffolds for regenerative medicine and clinical purposes. Raman spectroscopy can be used for non-invasive sensing of cellular and ECM biochemistry. We have investigated the use of conventional (confocal and semiconfocal) Raman microspectroscopy and fibre-optic Raman ...

متن کامل

A handheld laser scanning confocal reflectance imaging–confocal Raman microspectroscopy system

Confocal reflectance microscopy and confocal Raman spectroscopy have shown potential for non-destructive analysis of samples at micron-scale resolutions. Current studies utilizing these techniques often employ large bench-top microscopes, and are not suited for use outside of laboratory settings. We have developed a microscope which combines laser scanning confocal reflectance imaging and confo...

متن کامل

Applications of Microspectroscopy, Hyperspectral Chemical Imaging and Fluorescence Microscopy in Chemistry, Biochemistry, Biotechnology, Molecular and Cell Biology

Chemical imaging is a technique for the simultaneous measurement of spectra (chemical information) and images or pictures (spatial information)[1][2] The technique is most often applied to either solid or gel samples, and has applications in chemistry, biology[3][4][5] [6][7][8], medicine[9][10], pharmacy[11] (see also for example: Chemical Imaging Without Dyeing), food science, biotechnology[1...

متن کامل

Subcellular spectroscopic markers, topography and nanomechanics of human lung cancer and breast cancer cells examined by combined confocal Raman microspectroscopy and atomic force microscopy.

The nanostructures and hydrophobic properties of cancer cell membranes are important for membrane fusion and cell adhesion. They are directly related to cancer cell biophysical properties, including aggressive growth and migration. Additionally, chemical component analysis of the cancer cell membrane could potentially be applied in clinical diagnosis of cancer by identification of specific biom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016